
Investigating the Role of Architects in Scaling Agile Frameworks

Ömer Uludağ, Martin Kleehaus, Xian Xu, Florian Matthes
Chair for Informatics 19

Technische Universität München (TUM)
D-85748, Garching

{oemer.uludag,martin.kleehaus,xian.xu,matthes}@tum.de

Abstract—This study describes the roles of architects in
scaling agile frameworks with the help of a structured literature
review. We aim to provide a primary analysis of 20 iden-
tified scaling agile frameworks. Subsequently, we thoroughly
describe three popular scaling agile frameworks: Scaled Agile
Framework, Large Scale Scrum, and Disciplined Agile 2.0.
After specifying the main concepts of scaling agile frame-
works, we characterize roles of enterprise, software, solution,
and information architects, as identified in four scaling agile
frameworks. Finally, we provide a discussion of generalizable
findings on the role of architects in scaling agile frameworks.

Keywords-scaling agile frameworks; agile software develop-
ment; application architecture;

I. INTRODUCTION

Enterprises struggle to deal with unpredictable compet-
itive environments due to rapidly changing customer de-
mands, regulatory changes, and technological advancements
that can lead to the enterprise’s success [1], [2]. Thus,
the ability to detect relevant changes and respond in a
timely and effective manner becomes an important determi-
nant of the enterprise’s survival [3]. Software development
projects in such environments face changes either directly
or indirectly. In order to face these challenges, the agile
movement emerged in the 1990s, leading to the development
of agile manifesto and many agile software development
methods, including extreme programming (XP), kanban, and
scrum [4]. With these agile methods, small, co-located, self-
organizing teams work closely with the business customer
on a single-project context, maximizing the customer value
and quality of the delivered software product through rapid
iterations and frequent feedback loops [4].

Since the initial application of these methods are tai-
lored for small teams, large enterprises are interested in
extending agile methods to include larger teams and inter-
team coordination and communication [5]. Various scaling
agile frameworks, e.g., the Scaled Agile Framework (SAFe),
Disciplined Agile 2.0 (DA 2.0), and Large-Scale Scrum
(LeSS), were proposed to resolve issues associated with
team size, customer involvement, and project constraints [6].

Agile methods imply that the architecture should evolve
incrementally and constantly be tested with known require-
ments rather than being imposed by some direct structur-
ing force (emergent architecture design) [7]. The practice

of emergent architecture design is effective at the team
level but insufficient when developing large systems. It
causes excessive redesign efforts, architectural divergence,
and functional redundancy increasing the complexity of
application architectures [7], [8]. Therefore, an intentional
architecture design is required, which embraces architectural
initiatives and guidance for inter-team design and implemen-
tation synchronization [7], [9]. The effective evolution of
an application’s architecture requires the right balance of
emergent and intentional architecture design. This balance
is an essential determinant for addressing the complexity of
large applications architectures and large-scale agile projects
[7], [9].

However, literature documenting the influences of scal-
ing agile frameworks on application architectures and the
involvement of architects in large-scale agile projects is still
scarce. The main objective of this study is to investigate the
role of architects in scaling agile frameworks. Based on this
objective, three research questions (RQ) were formulated

• RQ1: What are the types of scaling agile frameworks?
• RQ2: What are the roles of architects in scaling agile

frameworks?
• RQ3: What are the generalizable findings about the role

of architects in scaling agile frameworks?

A. Research methodology

To identify material relevant to stated goal of this study,
we applied a structured literature review approach as recom-
mended by Brocke et al. [10]. In the first phase, we defined
the scope of the review and identified suitable research
questions about the role of architects in scaling agile frame-
works. In the second phase, key concepts were identified by
concept mapping, which also provided the opportunity to
identify additional relevant search terms: Scaled Agile Or-
ganization, Enterprise Architecture, Scaled Agile Enterprise
Architecture, Scaled Agile Framework, Software Engineer-
ing, and Scaled Agile Software Engineering, together with
a variety of related concepts, synonyms, and homonyms.
These were applied to the subsequent literature search in the
third phase. We examined a range of different Information
Systems journals, conference proceedings, documentations,
and books using EBSCOhost, ScienceDirect, Scopus, ACM
Digital Library, IEEExplore, SpringerLink, Emerald Insight,

and Google Scholar. Having compiled the aforementioned
list of search terms, we then used them in electronic full-text
search queries. In total, we obtained 146 relevant sources.
In the fourth phase, we created a concept matrix juxtaposing
the different architect roles with the identified scaling agile
frameworks to investigate their roles within the scaling agile
frameworks. In the last phase, the comparative analysis of
architect roles resulted in generalizable findings on the role
of architects in scaling agile frameworks.

The remainder of this paper is structured as follows.
In Section II, we define large-scale agile developments,
providing a primary analysis of the scaling agile frameworks
we identified in the literature and describing thoroughly the
three most mature frameworks. In Section III, we analyze
architect roles identified in scaling agile frameworks. We
analyze and discuss these findings in Section IV before
concluding the paper with remarks on future research.

II. SCALING AGILE FRAMEWORKS

The origin of agile ideas in business started with the
creation of the Agile Consortium in 1994 [11]. These ideas
were discovered independently in software engineering, cul-
minating in the creation of the Agile Manifesto [12] but have
exactly the same guiding principles as those in business.

The development of scaling agile frameworks dates back
to 1992, with the Crystal Family [13], and has increasingly
gained in popularity in the last few years. The main purpose
of such frameworks is to manage large agile teams with more
than 50 developers distributed across multiple geographical
locations in an agile way. Traditional agile methods such
as Scrum are not capable of managing this number of
developers. However, scaling agile methods introduce new
challenges, such as inter-team coordination and distribution
of work without a defined architecture or properly defined
requirements [14]. We further define the term large-scale ag-
ile development and provide a discussion of the frameworks
that currently attract the most attention.

A. Definition of large-scale agile development

The difficulty of introducing agile methods increases
with organization size [15]. The adoption of agile frame-
works often requires changing the entire organizational cul-
ture. Larger organizations have more dependencies between
projects and teams, which slows down any organizational
change. Large size also increases the need for formal doc-
umentation, which in turn reduces agility [16]. In addition
to inter-team coordination, agile teams also have to interact
with other organizational units, which are typically non-agile
in nature. Therefore, several companies have devised new
approaches to scaling agile methods to projects wherein a
lot of people are involved. Hence, the term large-scale agile
development1. refers to agile development in everything

1A primary systematic literature review on the challenges and success
factors for large-scale agile development was conducted by [17].

from large teams to large multi-team projects that want to
make use of agile development principles at the portfolio or
enterprise level [18]. Dingsøyr et al. [18] identified that large
scale agile projects had been regarded in terms of the number
of people or teams, project budget, code base size, or project
duration. Examples of cases that were described as large-
scale covered projects costing over $10 million with teams
of more than 50 people, code bases consisting of over half a
million lines of code [19], durations of 2 years, and scopes
of 60–80 features [20]. Based on their findings, Dingsøyr
et al. [18] measured large-scale projects by the number of
collaborating and coordinating teams as large-scale projects
with 2–9 collaborating teams and very large-scale projects
with over 10 collaborating teams.

B. Introduction to the most popular frameworks
The structured literature review described in Section I-A

revealed 20 scaling agile frameworks listed in Table I. Most
of the frameworks emerged from very basic approaches
to agile development, namely XP and Scrum, and were
enhanced as necessary in order to be applicable to very
large multi-team projects. In Table I, we summarize our
findings and provide primary information about the method-
ologists who invented and published the frameworks, the
organizations which were built upon them, and the scaling
agile approaches involved. The maturity section of Table I
indicates how well-established the particular framework is.
Here, we calculate the maturity2 of a framework based on

• the number of paper contributions that we found in the
literature search;

• the number of case studies described on the homepage
of the regarded framework;

• the available documentation that could be found either
on its homepage or in other sources;

• the training courses and certifications offered by the
organization; and

• the content of the community forums and blogs wherein
the companies shared their knowledge and other infor-
mation about the framework.

The LeSS, SAFe, and DA 2.0 frameworks are especially
mature, as they are cited very often in the literature, de-
scribing many real-world use cases, and also fulfill the other
adoption criteria. Therefore, we will subsequently provide
more details about these popular frameworks:

LeSS was released in 2008 by Craig Larman and Bas
Vodde and extends Scrum with scaling rules and guidelines
without losing sight of Scrums’s original goals. LeSS spec-
ifies additional organizational changes, which are not ad-
dressed in traditional Scrum. For instance cross-functional,

2The maturity is calculated based on the sum of the equally weighted
maturity criteria. Particularly, ’Yes’ values are coded as ’1’, whereas ’No’
values are coded as ’0’. Contributions and cases values of each framework
are divided by the max. values of contributions and cases. For instance, the
maturity rating of Crystal Family is calculated as follows:
17
35
· 0.2 + 1

35
· 0.2 + 1 · 0.2 + 0 · 0.2 + 1 · 0.2 = 0.503→ .

Table I
PRIMARY ANALYSIS OF SCALING AGILE FRAMEWORKS.

Methodologist Organization
Publication

Date
Category

Contri-
butions

Cases
Docu-

mentation

Training
Courses and

Certifications

Community,
Forum or

Blog
Rating

Crystal Family Alistair Cockburn - 1992 Set of Methods 17 1 Yes No Yes

Dynamic Systems Development Method
Agile Project Framework for Scrum

Arie van Bennekum DSDM Consortium 1994 Framework 28 4 Yes Yes Yes

Scrum-of-Scrums Jeff Sutherland and Ken Schwaber Scrum Inc. 2001 Mechanism 27 2 Yes No Yes

Enterprise Scrum Mike Beedle Enterprise Scrum Inc. 2002 Framework 4 - Yes Yes Yes

Agile Software Solution Framework
Asif Qumer and

Brian Henderson-Sellers
University of
Technology

2007 Framework 2 2 No No No

Large Scale Scrum Craig Larman and Bas Vodde LeSS Company B.V. 2008 Framework 29 22 Yes Yes Yes

Scaled Agile Framework Dean Leffingwell Scaled Agile Inc. 2011 Framework 35 35 Yes Yes Yes

Disciplined Agile 2.0 Scrott Ambler
Disciplined Agile

Consortium
2012 Framework 27 4 Yes Yes Yes

Spotify Model
Henrik Kniberg, Anders Ivarsson,

and Joakim Sundén
Spotify 2012 Model 11 1 Yes No Yes

Mega Framework
Rafael Maranzato, Marden

Neubert, and Paula Heculano
Universo Online S.A 2012 Framework 2 1 No No No

Enterprise Agile Delivery and Agile
Governance Practice

Erik Marks AgilePath 2012 Set of Practices 1 - Yes No Yes

Recipes for Agile Governance in the
Enterprise

Kevin Thompson Cprime 2013 Framework 4 1 Yes Yes No

Continuous Agile Framework Andy Singleton Maxos LLC 2014 Framework 3 - Yes No Yes

Scrum at Scale Jeff Sutherland and Alex Brown Scrum Inc. 2014 Framework 9 - Yes Yes Yes

Enterprise Transition Framework - agile42 2014 Framework 1 2 Yes Yes Yes

ScALeD Agile Lean Development
Peter Beck, Markus Gärtner,

Christoph Mathis, Stefan Roock
and Andreas Schliep

- 2014 Set of Principles 2 - Yes No Yes

eXponential Simple Continuous
Autonomous Learning Ecosystem

Peter Merel Xscale Alliance 2014 Set of Principles 3 - Yes Yes Yes

Lean Enterprise Agile Framework - LeanPitch Technologies 2015 Framework 0 - Yes Yes Yes

Nexus Ken Schwaber Scrum.org 2015 Framework 5 - Yes Yes Yes

FAST Agile Ron Quartel Cron Technologies 2015 Set of Methods 2 - Yes No Yes

Descriptive Information Maturity

cross-component, end-to-end feature teams are introduced
by LeSS through the elimination of traditional team lead
and project manager roles [21].

Larman and Vodde proposed two different frameworks
depending on the size of the project. The basic LeSS
framework provides guidelines and techniques for agile
development with less than ten teams [6].

In basic LeSS, a single product owner (PO) is common to
all ten teams, but no other special roles are specified com-
pared with standard Scrum. The LeSS framework changes
the structure of sprint planning meetings compared with the
traditional Scrum approach. Here, each of the agile teams,
represented by two members per team, plus the one overall
PO decide which chunk of product backlog items to work on.
This is in contrast with standard Scrum wherein the rest of
the agile team also participates. When contention occurs over
a backlog item, the PO mediates between teams. Likewise,
sprint review changes to a single meeting for all agile teams.
However, it is limited to two team members per agile team.
In addition, three more changes are established [6]

• The inter-team coordination meeting is designed to

increase information sharing and coordination. It can
be conducted frequently during the week and can take
various forms, including open space, town hall meeting,
multi-team daily Scrum, or Scrum of Scrums formats.

• The joint light product backlog refinement meeting
focuses on refining product backlog items for upcoming
sprints. It is restricted to two representatives per team
and should not exceed 5% of the sprint duration.

• Finally, a joint retrospective is added that aims to iden-
tify and plan improvement experiments for the overall
product or organization. The PO, scrum master, and one
representative from each team attend this meeting.

Agile development with more than ten teams is guided by the
second LeSS framework, named LeSS Huge. It introduces
additional scaling elements, which are required to manage
hundreds of developers in large enterprises. LeSS Huge
introduces a new concept, namely, requirement areas (RAs).
RAs encompass major areas of customer concern from a
product point of view and may grow or shrink over time
in order to match product needs. All RAs follow the same
sprint cadence and aim for continuous integration across the

entire product. Adding the RA as an attribute in the product
backlog creates an area product backlog (APB) view for
each RA. This represents a new feature in LeSS Huge. Each
product backlog item belongs to one area backlog. Area
backlog items are defined, prioritized, and split, as needed,
by the area product owner (APO). The APO focuses on one
APB and is usually a specialist in that area. The APO acts
similar as the PO would in the smaller LeSS framework.

SAFe was released in 2011 by Dean Leffingwell and
is now at version 4.0. SAFe builds on existing lean and
agile principles that are combined into a method for large-
scale agile projects. SAFe provides a soft introduction to
the agile world as it specifies many structured patterns.
This is often needed for those who are transitioning from
a more traditional environment, particularly in the context
of a large project. A common problem with agile adoption
is the difficulty in introducing such a major cultural change
to an organization. Thus, SAFe provides the structure needed
to make the transition more predictable, even though it
follows agile practices and stresses autonomy and decision-
making for knowledge workers. SAFe highlights four levels
of organization: team, program, value stream, and portfolio.
Each level integrates agile and lean practices, manages its
own activities, and is aligned with the other levels.

At the team level, the techniques outlined are those used in
Scrum, and two-week sprint cycles are recommended. Each
team comprises 5–9 members and has a scrum master and
a PO, similar to standard Scrum. All SAFe teams are part
of one agile release train (ART), a team of agile teams that
delivers a continuous flow of incremental releases of value.
Each agile team is responsible for defining, building, and
testing stories from its team backlog in a series of iterations
using common iteration cadences and synchronization to
align its activities with other teams so that the entire system
is iterating in unison. Teams use ScrumXP or Kanban to
deliver prototypes every two weeks [22].

At the program level, SAFe extends Scrum using the same
ideas but on a higher level. The program level is based on
an ART, which is composed of five sprint cycles. There
is also a sixth innovation planning sprint, which allows
teams to innovate, inspect, and adapt. Teams, roles, and
activities are organized around the ART [22]. At this level,
a product manager (PM) serves as the content authority for
the ART and is accountable for identifying program backlog
priorities. In addition, the PM works with POs to optimize
feature delivery and direct the work of POs at the team level.
A release train engineer (RTE) facilitates program level
processes and execution, escalates impediments, manages
risk, and helps to drive continuous improvement.

At the optional value stream level, the value stream
engineer (VSE) plays a similar role, facilitating and guiding
the work of all ARTs and suppliers. Further important roles,
such as business owner, DevOps team member, release
manager, and solution manager have been described in [22].

SAFe also specifies processes at one higher level, the
portfolio level, using lean principles, such as optimizing
value streams, which are long-lived series of steps used to
deliver value. These help executives and leaders identify and
prioritize epics and features that can be broken down at the
program level and scheduled for ARTs [22].

The DA 2.0 framework, previously kwown as Disciplined
Agile Delivery, was released in 2012 by Scott Ambler and
Mark Lines [23]. In comparison with SAFe, DA 2.0 aims
to address areas that are not thoroughly covered in smaller
scaling agile frameworks and recommends three phases:
inception, construction, and transition. While many agile
frameworks address what DA 2.0 calls the construction
phase, DA 2.0 provides recommendations for processes
that come both earlier in the project (inception) and as
teams prepare for delivery (transition). DA 2.0 also provides
flexibility by suggesting different process guidelines for
four categories of life cycles: agile/basic, lean/advanced,
continuous delivery, and exploratory.

The construction phase of agile/basic is Scrum, whereas
the lean/advanced life cycle uses processes similar to Kan-
ban. The inception phase is used to stock a work item
pool that is organized to achieve business values, fixed
delivery dates, expedited delivery, or some other intangible
goal. During the transition phase, planning, retrospection,
prototyping, stand up meetings, and other activities are
undertaken. The continuous delivery life cycle focuses on
mature DevOps, continuous integration, and deployment
processes for projects that require frequent delivery to stake-
holders. The exploratory life cycle minimizes early planning
in favor of fast delivery, gaining feedback, and incorporating
that feedback into the next delivery [23].

In the third continuous delivery life cycle, the inception
phase is explicit and has a very brief transition period. In
this life cycle, products are produced on a very regular basis:
daily, weekly, or monthly [23].

The last life cycle, the exploratory life cycle, aims to
encourage agile teams to put themselves in start-up or
research situations wherein the stakeholders have clear ideas
for a new product but do not yet understand the needs of
their user base [23].

Table II
IDENTIFIED ARCHITECT ROLES IN SCALING AGILE FRAMEWORKS.

Enterprise
Architect

Software
Architect

Solution
Architect

Information
Architect

DSDM - X X -

SAFe X X X X

DA 2.0 X X X -

EADAGP X - - X

III. THE ROLE OF ARCHITECTS IN SCALING AGILE
FRAMEWORKS

Since traditional agile methods, such as XP or Scrum, do
not include the role of architects, we recognize that this is
no longer valid for scaling agile frameworks. In particular,
we have seen that several scaling agile frameworks involve
various architect roles. We have selected a set of predom-
inant architect roles relevant to the realm of enterprise
architecture (EA) from refs. [24] and [25] to describe their
function in scaling agile frameworks. These roles comprise
the enterprise architect, software architect, solution archi-
tect, and information architect3. We have searched each
relevant source for these architect roles and related them
to the different scaling agile frameworks. The results are
summarized in Table II.

Only 4 out of 20 scaling agile frameworks include archi-
tect roles, namely Dynamic Systems Development Method
Agile Project Framework for Scrum (DSDM), SAFe, DA
2.0, and Enterprise Agile Delivery and Agile Governance
Practice (EADAGP). The findings also reveal that no frame-
work describes all architect roles in detail. The frameworks
predominantly consider the roles of enterprise, software, and
solution architects. In addition, the results show that more
mature frameworks are more likely than others to describe
architect roles. However, due to limited information and
unavailable documentation, further analyses are required to
emphasize this assumption.

We have created the following role description template,
based on refs. [24], [26], [27] to describe architect roles

• Key concerns describe the key interests of the architect
role.

• Area of interests describes the area of interests of the
architect role, e.g., special project tasks.

• Contributions describe the contributions of the architect
role, e.g., resources like work, financial capital, or other
types of engagements.

• Strategies describes the appropriate strategies for work-
ing with the architect role from management view.

• Responsibilities describes the responsibilities of the
architect role.

• Commitments describes the commitments of the archi-
tect role, which can be either active opposition, passive
opposition, neutral, passive support, or active support.

The following sections present our results about the role of
architects in various scaling agile frameworks.

A. The role of enterprise architect

The role of enterprise architect is only considered by
SAFe, DA 2.0, and EADAGP.

In SAFe, an enterprise architect works with business
stakeholders and software and solution architects to drive

3We have also considered synonyms for each architect role, e.g., domain
architect denotes the same role as solution architect.

holistic technology implementation across value streams.
The enterprise architect is concerned with driving EA strat-
egy, which comprises five key aspects, namely choice of
technology, software and solution strategy, development and
deployment infrastructure strategy, inter-program collabora-
tion, and implementation strategy. This is communicated,
along with other key business drivers of architecture, to
system architects and nontechnical stakeholders.
The main contributions of the enterprise architect are provid-
ing strategic technical directions and driving collaboration of
programs and teams around a common technical vision.
The portfolio level represents the enterprise architect’s area
of interest.
The strategy for working with enterprise architects is to
involve them actively in the portfolio level by ensuring the
presence of enterprise-wide architectural systems, platforms,
and infrastructures.
The key responsibilities of the enterprise architect are

• maintaining a high-level and holistic vision of enter-
prise solutions and development initiatives;

• understanding and communicating strategic themes and
other key business drivers for architecture to system
architects and nontechnical stakeholders;

• working with business stakeholders and software and
solution architects to drive holistic technology imple-
mentation across value streams;

• working closely with software and solution architects
to ensure that individual program and product strategies
align with enterprise objectives;

• participating in the strategy for building and maintain-
ing the enterprise architectural runway; and

• facilitating the reuse of ideas, components, and patterns.

The commitment of the enterprise architect is the active
support of agile teams [22].

Enterprise awareness is one of the key aspects of the DA
2.0 framework. Enterprise awareness motivates agile teams
to consider the overall needs of the organization and to
leverage existing assets in alignment with an enterprise-level
strategy. DA 2.0 recommends that agile teams work closely
with enterprise professionals, such as enterprise architects.
Within DA 2.0, the enterprise architect has both a primary
role as a stakeholder and a secondary role as a specialist
for assisting agile teams. The key concerns of enterprise
architects are addressing strategies for supporting delivery
teams and other stakeholders, evolving and capturing the
EA, and governing the EA efforts.
The inception, construction, and ongoing process goals of
the DA 2.0 framework form the area of interest of the enter-
prise architect. In the inception phase, the enterprise architect
works closely with agile teams to align them with enterprise
goals and to provide non-functional requirements (NFRs).
Further, the enterprise architect supports agile teams during
the initial architectural envisioning and modeling efforts and

the initial technical strategy definition phase by ensuring
that they leverage as much of the existing infrastructure as
possible. In the construction phase, the enterprise architect
collaborates with agile teams to ensure that their solution
reflects the overall strategy of the organization. Within the
ongoing process goal, the enterprise architect holds regular
coordination meetings with product management teams to
ensure consistency and manage dependencies across teams.
The enterprise architect contributes to software development
by providing guidance to agile teams by producing high-
level technology and business roadmaps, which capture
the organization’s vision and by helping agile teams to
understand the overall vision. The strategy for working
with enterprise architects is to involve them passively in
development projects.
The key responsibilities of the enterprise architect are

• supporting and collaborating closely with stakeholders
on a regular basis to understand their needs and to
develop the organization’s roadmap;

• supporting and collaborating closely with agile teams
on a regular basis to guide them through the business
and technical roadmaps and help them to identify
potentially reusable assets and technical debts;

• negotiating technical dependencies between solutions;
• exploring architectural views; and
• adopting and tailoring architectural frameworks.

The commitment of the enterprise architect is the passive
support of agile teams by providing guidance and roadmaps
[23], [28], [29], [30], [31], [32].

The EADAGP framework includes an event-driven gov-
ernance model, which provides a lightweight, lean, and
virtual governance model design. EADAGP introduces a
governance buffer zone, which aims to protect agile teams
from the slowness, friction, and rigidity of traditional IT
governance models. The agile governance buffer zone is a
subtractive layer that is realized by combining three different
styles of governance, namely top-down prescriptive gover-
nance (traditional IT governance), community governance,
and self-governance. The enterprise architect forms, along
with scrum master(s), PO(s), and the agile governance owner
the agile community team (ACT). This is a community
governance construct, responsible for governing multiple
agile teams that are aligned with one or more releases.
Within the ACT, the enterprise architect is concerned with
governance requirements that span multiple sprints or re-
leases and cross-sprint team coordination and collaboration.
Community governance, in particular the ACT, represents
the area of interest of the enterprise architect.
The main contributions of the enterprise architect are ad-
dressing governance requests, escalating them to IT gover-
nance if they cannot be addressed, and notifying agile teams
and IT governance for their agreement and/or approval.
The strategy for working with enterprise architects is to

involve them passively within the ACT so they can make
appropriate governance decisions and provide guidance.
The key responsibilities of the enterprise architect are

• escalating governance issues to IT governance;
• supporting agile teams by making appropriate gover-

nance decisions and providing guidance;
• communicating governance decisions to enterprise IT

governance for their agreement;
• supporting the governance backlog grooming process;
• harmonizing governance requirements across sprints

and agile teams;
• reporting technology and architecture require-

ments/issues to EA oversight for alignment and issue
resolution;

• identifying security requirements and challenges that
may not have been pre-determined; and

• raising potential compliance and risk requirements that
have to be reviewed and signed off by governance, risk
and compliance bodies, and EA sign offs.

The commitment of the enterprise architect is the passive
support of agile teams by protecting them from the slowness
and rigidity of traditional IT governance [33], [34].

B. The role of software architect

DSDM, SAFe, and DA 2.0 include the role of software
architects.

DSDM does not explicitly prescribe the role of software
architect but it does specify the role of a technical coordina-
tor, whose responsibilities can be allocated to more than one
person, e.g., a system architect. Thus, we will concentrate
on describing the role of the technical coordinator, which is
relevant to the role of a software architect.
As the project’s technical authority, the software architect’s
key concern is to ensure that the project is technically
coherent and meets the desired technical standards. The
software architect holds the business and technical visions
for the project.
The project level constitutes the area of interest of the
software architect. Therein, the software architect may be a
part of a project board or steering committee for the project.
Technical development and direction of the solution and
system architecture definitions are the software architect’s
main contributions.
The strategy for working with software architects is to
involve them as technical coordinators.
The responsibilities of the software architect are

• agreeing and controlling the technical architecture;
• identifying and owning architectural and other techni-

cally based risks;
• working with business analysts to evaluate the technical

options and decide on the best way to turn the high-
level business requirements into a technical solution;

• promoting standards for technical best practice;

• acting as the final arbiter of technical differences be-
tween agile team members; and

• defining the system architecture that constitutes the
technical framework within which the solution will be
developed and providing a high-level description of the
structure of that solution.

The commitment of the software architect is passive support
of agile teams [11], [35], [36].

SAFe’s key roles at the program level include the RTE,
product management, and system architect/engineer, here-
after the software architect. The software architect role is
filled by an individual or small team that has technical
responsibility for the overall architectural and engineering
design of the system and aligns ARTs with the common
technical and architectural vision for the solution under de-
velopment. The software architect participates in defining the
system, as well as any subsystems and interfaces, validating
technology assumptions, and evaluating alternatives. The
software architect works at a higher level of abstraction than
the teams and supports system development by providing,
communicating, and evolving the larger technological and
architectural view of the solution.
The system architect is concerned with executing the upfront
architecture design, guiding the emergent architecture for
all program teams, and defining the architectural runway
that supports new feature development, as well as providing
guidance for common solution behaviors, shared compo-
nents, and separation of concerns.
The program level, particularly the ART, represents the
software architect’s main area of interest.
The software architect contributes to software development
by working with agile teams and providing technical enable-
ment with respect to subsystems and capability areas under
the purview of the ART.
The strategy for working with software architects is to
involve them at program level.
The key responsibilities of the software architect are

• defining NFRs, major system elements, subsystems,
and interfaces;

• preparing the architecture vision briefing within the
program increment (PI) planning event;

• presenting the architecture vision, which may include
descriptions of new architectural epics for common
infrastructure, any large-scale refactors under consid-
eration, and system-level NFRs; and

• supporting the PO by refining the team backlog.
In addition, the software architect shares several common
responsibilities with the solution architect, which are

• defining and refining NFRs, subsystems, and interfaces
to ensure that the solution meets relevant standards and
other system quality requirements;

• defining subsystems and their interfaces, allocating
responsibilities to subsystems, understanding solution

deployment, and communicating requirements for in-
teractions with the solution context;

• preparing for the PI planning event by updating enabler
definitions and models;

• assisting with decision-making and sequencing of the
key technological infrastructures that will host the new
business functionality;

• creating and supporting enabler epics by steering them
through the Kanban system, providing both the guid-
ance needed to analyze them and the information
needed to estimate and implement them;

• working with portfolio stakeholders, particularly the en-
terprise architect, to develop, analyze, split, and realize
the implementation of enabler epics; and

• planning and developing the architectural runway in
support of upcoming business features and capabilities.

The commitment of the software architect is the active
support of agile teams within the program level [22].

As already mentioned in Section II-B, DA 2.0 introduces
the AM role of architecture owner, which is typically the
software or solution architect, hereafter the software archi-
tect4. The software architect is concerned with owning ar-
chitecture decisions for the team and facilitating the creation
and evolution of the overall solution design.
The first two phases, namely the inception and transition
phases, as well as the ongoing process goals that occur
throughout the delivery life cycle represent the area of
interest of the software architect. The software architect
is involved during the inception phase by contributing to
exploration of the initial solution requirements, alignment of
the solution with both the business and technical directions
of the organization, and identification of the initial technical
strategy. During the construction phase of the solution, the
software architect updates the architectural handbook in the
iteration in which the features are delivered. The software
architect contributes to the goal of activity coordination
within the ongoing process goal by having regularly sched-
uled information meetings with the PO to share information
about work details, priorities, dependencies, and issues. The
software architect mainly contributes to the identification of
the initial technical strategy, definition of the architecture,
and development of technical aspects of the overall solution
architecture. The strategy for working with software archi-
tects is to involve them during the two first life cycle phases
and with ongoing process goals of DA 2.0.
The key responsibilities of the software architect are

• guiding the creation and evolution of the solution
architecture that the team is working on;

• mentoring and coaching other team members with best
practices of architecture;

• understanding the architectural direction and standards

4Since DA 2.0 does not differentiates between the roles of software
architect and solution architect, we have merged the findings for both roles.

of the organization and helping to ensure that the agile
team adheres to them appropriately;

• understanding existing enterprise assets such as frame-
works, patterns, and subsystems and ensuring that the
team uses them where appropriate;

• ensuring that the solution will be easy to support by
encouraging good design and refactoring to minimize
technical debt;

• ensuring that the solution is integrated and tested on a
regular basis, ideally via continuous integration;

• working closely with the team lead to identify tech-
nical risks in the project and determining strategies to
mitigate them; and

• leading the initial architecture envisioning effort at
the beginning of the project and supporting the initial
requirements envisioning effort.

The commitment of the software architect is the active
support of agile teams [23], [31], [32].

C. The role of solution architect

The role of solution architects is supported by DSDM,
SAFe, and DA 2.0.

As discussed previously in Section III-B, DSDM does not
include the architect roles explicitly. However, a solution
architect can also be allocated to the role of a technical
coordinator. Thus, we will describe the technical coordinator
characteristics that are relevant to the solution architect role.
The solution architect is concerned with definition of the
solution architecture.
Thus, the solution architecture represents the solution archi-
tect’s area of interest. Within DSDM, the solution archi-
tecture is set during the foundation phase, which makes a
preliminary investigation of the feasibility of the solution
and establishes a fundamental understanding of the business
rationale for the project and the potential solution. The solu-
tion architecture constitutes an evolutionary product, which
provides a high-level design framework for the solution. It
covers both business and technical aspects of the solution.
The main contribution of the solution architect is in the
definition of the solution architecture during the foundation
phase of the project.
The strategy for working with solution architects is to
involve them actively in defining the solution architecture
during the feasibility, foundation, evolutionary development,
and deployment phases.
The solution architect is responsible for the overall design
and integrity of the technical aspects of the solution, which
comprise the solution architecture.
The commitment of the solution architect is the active
support of agile teams by providing the definition of the
solution architecture [11], [35], [36].

At the value stream level, SAFe introduces additional
roles, namely solution management, VSE, and solution
architect/engineer, hereafter solution architect. The role of

solution architect is filled by cross-disciplinary teams that
take a systemwide view of solution development.
The solution architect is concerned with the overall archi-
tectural design of the solution, definition of the higher-level
functional and NFRs, determination of major components
and subsystems, and definition of interfaces.
The primary area of interest of the solution architect is the
value stream level.
As a technical leader, the solution architect contributes to the
entire solution under development by communicating and
evolving the larger technological and architectural view of
the solution and aligning the value stream and ARTs to a
common technological and architectural vision.
The strategy for working with solution architects is to
involve them actively and to enable their close collaboration
with business stakeholders, teams, customers, suppliers, and
third-party stakeholders.
Since the solution architect shares several common respon-
sibilities with the software architect in SAFe, we will only
describe responsibilities, which are exclusive to the solution
architect (see Section III-B for common responsibilities).
The exclusive responsibilities of the solution architect are

• supporting the solution management by managing the
value stream kanban;

• discussing upcoming enabler capabilities and epics with
the solution management;

• defining the overarching architecture that connects the
solution across ARTs;

• working with the system architect to guide the archi-
tecture developed by the ARTs;

• ensuring technical alignment with the solution context,
including interfaces and constraints;

• attending to the value stream and ART PI planning
events; and

• updating progress toward milestones, program PI ob-
jectives, and dependencies among the ARTs

The commitment of the solution architect is the active
support of agile teams at value stream level [22].

D. The role of information architect

The role of information architect is only supported by
SAFe and EADAGP.

Within SAFe, the key concern of the information architect
is to participate in a shared services role in order to support
development by quickly bringing specialized expertise to
bear on areas of the system or solution that require unique
knowledge and skills.
The area of interest of the information architect is the ART
and value stream.
The main contribution of the information architect is to
support agile teams on the ART and to contribute to the
architectural runway. Along with a system architect, a scrum
master and one or two agile teams. They create the techno-
logical infrastructure to support the highest-priority features

in a near-term PI and the intentional architecture that guides
cross-team design and implementation synchronization.
The strategy for working with information architects is to
involve them actively in the project and to embed them
periodically in agile teams.
The responsibilities of the information architect are

• participating in PI planning as well as in pre- and post-
PI planning;

• driving requirements and taking ownership of depen-
dent backlog items;

• collaborating with agile teams to fulfill dependencies
during PI executions; and

• participating in system and solution demos.
The commitment of the information architect is the active
support of agile teams [22].

Within the EADAGP framework, the key concerns of the
information architect is participation within the ACT. The
information architect works on governance requirements that
cut cross multiple sprint teams or releases.
The area of interest of the information architect is the ACT.
The main contributions of the information architect is
providing information architecture governance requirements
that span multiple sprints or releases.
The strategy for working with information architects is to
involve them passively in the project.
The key responsibilities of the information architect are

• escalating and communicating governance issues and
decisions to IT governance;

• supporting agile teams by making appropriate gover-
nance decisions and providing guidance;

• supporting the governance backlog grooming process;
• harmonizing governance requirements across sprints

and agile teams;
• surfacing technology and architecture requirements;
• identifying security requirements and challenges that

may not have been pre-determined; and
• raising potential compliance and risk issues.

The commitment of the information architect is the passive
support of agile teams and, thus, of software development
since the information architect is only responsible for im-
posing governance requirements on agile teams [33].

IV. DISCUSSION

We now discuss the main outcomes of our findings.
Increasing development speed by balancing emergent and
intentional architecture design. While some scaling agile
frameworks, e.g., LeSS, are against upfront architecture
design, other frameworks, such as DA 2.0 and SAFe,
endorse upfront architecture design and planning. While
they highlight the dangers of traditional architectural habits,
e.g., heavyweight documentations, tedious upfront design
approaches, and imposed architectural guidelines, they also
realize that some initial envisioning performed at the be-
ginning of the project can increase effectiveness and reduce

excessive redesign efforts as the teams are steered in the
intended direction. Only a close collaboration between agile
teams, software, solution, and enterprise architects can en-
able an optimal interplay of emergent design and intentional
architecture.

Finding the right balance between centralized and
decentralized architectural decision-making. Escalating any
type of architectural decision to higher levels of authority
increases delay and decreases the usefulness of the decision.
A balanced combination of centralized and decentralized
decision-making provides many benefits, e.g., faster time to
market and higher-quality products and services.

Sparing agile development from traditional IT gover-
nance. Some scaling agile frameworks, such as DSDM and
DA 2.0, recognize the real value of agility in terms of project
productivity and solution quality while acknowledging and
accepting necessary constraints, e.g., governance, architec-
ture, and infrastructure strategies, which often exist when
working in a corporate environment. However, traditional
governance models are slowing down agile teams in large
organizations. SAFe, EADAGP, and DA 2.0 recommend new
governance models that are collaborative, decentralized, and
light-weight. These new models allow teams to decentralize
their decision making and to govern themselves.

Ensuring the reuse of enterprise assets. Architects are
aware of existing enterprise assets, e.g., patterns and stan-
dards, which are available for reuse, and ensure that agile
teams utilize them where applicable. This accelerates the
development process and reduces time to market.

V. CONCLUSION AND FUTURE WORK

In this study, we have motivated the need for scaling
existing agile methods to large-scale agile development due
to their deficiencies in inter-team coordination and commu-
nication. We have then presented a primary analysis of the
identified scaling agile frameworks. Based on our maturity
assessment, we have identified LeSS, SAFe, and DA 2.0 as
the most mature frameworks. Finally, we have extensively
characterized the different architect roles that have been
identified in scaling agile frameworks. Our findings indicate
that architects both actively and passively support agile
teams by driving architectural initiatives, participating in ar-
chitectural runways, harmonizing governance requirements,
and ensuring technical alignment in solution contexts. Future
research may analyze the challenges faced by architects
in scaling agile environments by conducting case studies
in organizations that can provide practical experience of
adopting scaling agile frameworks.

REFERENCES

[1] P. Weill and S. Woerner, “Thriving in an increasingly digital
ecosystem,” MIT Sloan Management Review, vol. 56, no. 4,
p. 27, 2015.

[2] B. Sherehiy, W. Karwowski, and J. Layer, “A review of
enterprise agility: Concepts, frameworks, and attributes,” In-
ternational Journal of industrial ergonomics, vol. 37, no. 5,
pp. 445–460, 2007.

[3] E. Overby, A. Bharadwaj, and V. Sambamurthy, “Enterprise
agility and the enabling role of information technology,”
European Journal of Information Systems, vol. 15, no. 2, pp.
120–131, 2006.

[4] P. Kettunen, “Extending software project agility with new
product development enterprise agility,” Software Process:
Improvement and Practice, vol. 12, no. 6, pp. 541–548, 2007.

[5] M. Alqudah and R. Razali, “A review of scaling agile methods
in large software development,” International Journal on
Advanced Science, Engineering and Information Technology,
vol. 6, no. 6, pp. 28–35, 2016.

[6] A. Vaidya, “Does dad know best, is it better to do less or just
be safe? adapting scaling agile practices into the enterprise,”
PNSQC. ORG, pp. 828–837, 2014.

[7] “Agile architecture,” http://www.scaledagileframework.com/
agile-architecture/, accessed: 2017-04-26.

[8] M. Mocker, “What is complex about 273 applications? un-
tangling application architecture complexity in a case of
european investment banking,” in System Sciences, 2009.
HICSS’09. 42nd Hawaii International Conference on. IEEE,
2009, pp. 1–14.

[9] M. Waterman, “Reconciling agility and architecture: A theory
of agile architecture,” Ph.D. dissertation, Victoria University
of Wellington, 2014.

[10] J. Vom Brocke, A. Simons, B. Niehaves, K. Riemer, R. Plat-
tfaut, and A. Cleven, “Reconstructing the giant: On the
importance of rigour in documenting the literature search
process,” in ECIS, vol. 9, 2009, pp. 2206–2217.

[11] A. B. Consortium, The DSDM Agile Project Framework
Handbook. Agile Business Consortium, 2014.

[12] M. Fowler and J. Highsmith, “The agile manifesto,” Software
Development, vol. 9, no. 8, pp. 28–35, 2001.

[13] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile
software development methods: review and analysis,” VTT
Technical report, Tech. Rep., 2002.

[14] D. Leffingwell, Scaling Software Agility: Best Practices for
Large Enterprises (The Agile Software Development Series).
Addison-Wesley Professional, 2007.

[15] T. Dybå and T. Dingsøyr, “Empirical studies of agile soft-
ware development: A systematic review,” Inf. Softw. Technol.,
vol. 50, no. 9-10, pp. 833–859, Aug. 2008.

[16] M. Lindvall, D. Muthig, A. Dagnino, C. Wallin, M. Stup-
perich, D. Kiefer, J. May, and T. Kahkonen, “Agile soft-
ware development in large organizations,” Computer, vol. 37,
no. 12, pp. 26–34, 2004.

[17] K. Dikert, M. Paasivaara, and C. Lassenius, “Challenges and
success factors for large-scale agile transformations: A sys-
tematic literature review,” Journal of Systems and Software,
vol. 119, pp. 87–108, 2016.

[18] T. Dingsøyr and N. Moe, Towards Principles of Large-
Scale Agile Development. Cham: Springer International
Publishing, 2014, pp. 1–8.

[19] K. Petersen and C. Wohlin, “The effect of moving from a
plan-driven to an incremental software development approach
with agile practices,” Empirical Softw. Engg., vol. 15, no. 6,
pp. 654–693, Dec. 2010.

[20] E. Bjarnason, K. Wnuk, and B. Regnell, “A case study on
benefits and side-effects of agile practices in large-scale re-
quirements engineering,” in Proceedings of the 1st Workshop
on Agile Requirements Engineering, ser. AREW ’11. New
York, NY, USA: ACM, 2011, pp. 31–35.

[21] B. V. Craig Larman, “Scaling agile development,” CrossTalk,
pp. 8–12, 2013.

[22] D. Leffingwell, A. Yakyma, R. Knaster, D. Jemilo, and
I. Oren, SAFe R© 4.0 Reference Guide: Scaled Agile
Framework R© for Lean Software and Systems Engineering.
Addison-Wesley Professional, 2016.

[23] S. Ambler and M. Lines, Disciplined agile delivery: A prac-
titioner’s guide to agile software delivery in the enterprise.
IBM Press, 2012.

[24] V. Haren, TOGAF Version 9.1. Van Haren Publishing, 2011.
[25] P. A. Khosroshahi, M. Hauder, A. Schneider, and F. Matthes,

“Enterprise architecture management pattern catalog version
2.0,” Technische Universität München, Tech. Rep., 2015.

[26] E. Andersen, K. Grude, and T. Haug, Goal directed project
management: effective techniques and strategies. Kogan
Page Publishers, 2009.

[27] J. R. Turner, People in project management. Gower Publish-
ing Company, 2003.

[28] S. Ambler and M. Lines, “Scaling agile software develop-
ment: Disciplined agility at scale,” Disciplined Agile Consor-
tium, Tech. Rep., 2014.

[29] ——, “The disciplined agile process decision framework,”
in International Conference on Software Quality. Springer,
2016, pp. 3–14.

[30] ——, “Going beyond scrum disciplined agile delivery,” Dis-
ciplined Agile Consortium, Tech. Rep., 2013.

[31] ——, “Scaling agile software development tactically: Disci-
plined agile delivery at scale,” Disciplined Agile Consortium,
Tech. Rep., 2016.

[32] “Disciplined agile 2.x: A process decision framework,” http:
//www.disciplinedagiledelivery.com/, accessed: 2017-04-26.

[33] E. Marks, “Governing enterprise agile development without
slowing it down: Achieving friction-free scaled agile gover-
nance via event- driven governance,” AgilePath Corporation,
Tech. Rep., 2014.

[34] ——, “A lean non-functional requirements (nfr) framework:
A common framework for governance, risk and compliance as
well as traditional nfrs,” AgilePath Corporation, Tech. Rep.,
2017.

[35] A. B. Consortium, DSDM Atern Handbook. Agile Business
Consortium, 2008.

[36] A. Craddock, K. Richards, D. Tudor, B. Roberts, and J. God-
win, “The dsdm agile project framework for scrum,” DSDM
Consortium, Tech. Rep., 2012.

http://www.scaledagileframework.com/agile-architecture/
http://www.scaledagileframework.com/agile-architecture/
http://www.disciplinedagiledelivery.com/
http://www.disciplinedagiledelivery.com/

